Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 85(10): 1397-1403, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35723550

ABSTRACT

ABSTRACT: A significant decrease in norovirus prevalence and concentration was observed in oyster production areas in Ireland during winter 2020 to 2021. Oyster production areas impacted by human wastewater discharges that had been undergoing norovirus surveillance since 2018 were investigated. Samples collected in the winter seasons of 2018 to 2019 and 2019 to 2020, prior to when the COVID-19 pandemic interventions were applied, showed a prevalence of 94.3 and 96.6%, respectively, and geometric mean concentrations of 533 and 323 genome copies per g, respectively. These values decreased significantly during the winter of 2020 to 2021 (prevalence of 63.2% and geometric concentration of below the limit of quantification), coinciding with the control measures to mitigate the transmission of severe acute respiratory syndrome coronavirus 2 of the genus Betacoronavirus. Divergence between norovirus GI and GII prevalence and concentrations was observed over the 3-year monitoring period. Norovirus GII was the dominant genogroup detected in winter 2020 to 2021, with over half of samples positive, although concentrations detected were significantly lower than prepandemic winters, with a geometric mean concentration of below the limit of quantification.


Subject(s)
COVID-19 , Norovirus , Ostreidae , Animals , Genotype , Humans , Ireland , Pandemics , Seasons
2.
Food Environ Virol ; 13(2): 229-240, 2021 06.
Article in English | MEDLINE | ID: mdl-33649884

ABSTRACT

Norovirus contamination of oysters is the lead cause of non-bacterial gastroenteritis and a significant food safety concern for the oyster industry. Here, norovirus reduction from Pacific oysters (Crassostrea gigas), contaminated in the marine environment, was studied in laboratory depuration trials and in two commercial settings. Norovirus concentrations were measured in oyster digestive tissue before, during and post-depuration using the ISO 15216-1 quantitative real-time RT-PCR method. Results of the laboratory-based studies demonstrate that statistically significant reductions of up to 74% of the initial norovirus GII concentration was achieved after 3 days at 17-21 °C and after 4 days at 11-15 °C, compared to 44% reduction at 7-9 °C. In many trials norovirus GII concentrations were reduced to levels below 100 genome copies per gram (gcg-1; limit of quantitation; LOQ). Virus reduction was also assessed in commercial depuration systems, routinely used by two Irish oyster producers. Up to 68% reduction was recorded for norovirus GI and up to 90% for norovirus GII reducing the geometric mean virus concentration close to or below the LOQ. In both commercial settings there was a significant difference between the levels of reduction of norovirus GI compared to GII (p < 0.05). Additionally, the ability to reduce the norovirus concentration in oysters to < LOQ differed when contaminated with concentrations below and above 1000 gcg-1. These results indicate that depuration, carried out at elevated (> 11 °C) water temperatures for at least 3 days, can reduce the concentration of norovirus in oysters and therefore consumer exposure providing a practical risk management tool for the shellfish industry.


Subject(s)
Crassostrea/virology , Food Handling/methods , Norovirus/growth & development , Shellfish/virology , Animals , Food Contamination/analysis , Food Handling/economics , Food Safety , Genome, Viral , Laboratories , Norovirus/genetics , Norovirus/isolation & purification , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Shellfish/economics
3.
Food Environ Virol ; 10(3): 288-296, 2018 09.
Article in English | MEDLINE | ID: mdl-29725931

ABSTRACT

Oysters contaminated with norovirus present a significant public health risk when consumed raw. In this study, norovirus genome copy concentrations were determined in Pacific oysters (Magallana gigas) harvested from a sewage-impacted production site and then subjected to site-specific management procedures. These procedures consisted of relocation of oysters to an alternative production area during the norovirus high-risk winter periods (November to March) followed by an extended depuration (self-purification) under controlled temperature conditions. Significant differences in norovirus RNA concentrations were demonstrated at each point in the management process. Thirty-one percent of oyster samples from the main harvest area (Site 1) contained norovirus concentrations > 500 genome copies/g and 29% contained norovirus concentrations < 100 genome copies/g. By contrast, no oyster sample from the alternative harvest area (Site 2) or following depuration contained norovirus concentrations > 500 genome copies/g. In addition, 60 and 88% of oysters samples contained norovirus concentrations < 100 genome copies/g in oysters sampled from Site 2 and following depuration, respectively. These data demonstrate that site-specific management processes, supported by norovirus monitoring, can be an effective strategy to reduce, but not eliminate, consumer exposure to norovirus genome copies.


Subject(s)
Industry/methods , Norovirus/growth & development , Ostreidae/virology , Seasons , Sewage/virology , Shellfish/virology , Water Quality , Animals , Commerce , Food Microbiology , Genome , Humans , Ostreidae/growth & development , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...